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Abstract:

This article initiates the study of a new conformable triple Laplace transform.
Single and double conformable Laplace transforms are utilized. Some
fundamental properties of the newly proposed transform are established.
Some significant results are also proved by using the obtained properties.
Additionally, the new transform is applied to solve Mboctara equations. By
using the Mathematica the exact and proposed method solution of all the
example at various fractional orders are shown in the tables and the obtained
solution is compared graphically with its exact solution.
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1. INTRODUCTION

Partial differential equations (PDEs) have long been regarded as one of the most complicated
issues in mathematics. A novel type of non-homogeneous partial differential equation known as the
Mboctara equation which is useful for analyzing the characteristics of the collective motion of
microparticles in a material. Particularly in material science, one can use the Mboctara equation to
analyze any material by examining its structural and geometrical framework (Srikumar Panda et al.
2020).

The classification of PDEs with respect to certain constraints is a widely studied topic. One of the
reasons of doing research in this direction is to regulate the quantity and category of the constraints
needed to ascertain whether the problem is posed effectively and possess a model solution. The solution
procedure is entirely predicated on the classification of PDEs. It is considered that the Laplace transform
is extensively applied to both linear and nonlinear equations (AE Hamza, AKH Sedeeg et al. 2023, AE
Hamza, R Khalil et al. 2023, AKH Sedeeg 2023, Ozan Ozkan, Ali Kurt 2020, Ram Shiromani 2018,
Ozan Ozkan , Ali Kurt 2018, Abdon Atangana 2013, Ranjit R. Dhunde et al. 2013, Hassan Eltayeb et
al. 2020, Maryam Omran et al. 2017). The Laplace transform is a discrete method implemented in
engineering and physics to determine the output of a linear equation system. It accomplishes this by
combining the input single with the unit impulse response.

In particular, the fractional derivative is important in characterizing the memory and heredity
qualities of materials and processes (Saha Ray, S. 2020). The fractional order is equal to its fractional
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dimensions, and discontinuous media are the finest places to describe the fractional differential
equations. Fractal media which are complicated arise in numerous disciplines of engineering and science.
For modeling challenges for fractal mathematics and engineering on Cantorian space in fractal media,
the local fractional calculus theory is crucial in this regard. One of the earlier concerns in the research
of fractional differential equations is the numerical and precise solution of these equations. To date,
several effective techniques have been put forth to produce accurate and numerical solutions for
fractional differential equations. Nonlinear fractional partial differential equations are the most effective
means of modeling the majority of nonlinear physical processes that arise in several scientific domains,
including fluid dynamics, mathematical biology, solid state physics, optical fibers, plasma physics, and
chemical kinetics.

When such circumstances arise, convolution becomes a multiplication operation when the
computation is performed using the Laplace transform, which is more tractable to solve due to its
algebraic nature. Due to the numerous advantages of the Laplace transform, electrical engineering makes
extensive use of it. The Partial differential equations can be transformed by using the Laplace transform
into algebraic equation. The inverse Laplace transform is then used is solve the initial Partial differential
equations. The Partial differential equations and fractional Partial differential equations have both been
solved utilizing this Laplace transform (Lokenath Debnath 2015, A. K.Thakur et al. 2018).

In brief the triple Laplace transform plays the role of an extension for Laplace transform in such
work (Shailesh A. Bhanotar et al. 2021, Belgacem Fethi Bin Muhammad et al. 2021). In the next steps
the conformable triple Laplace transforms will be adopted for the whole study. The following is a
breakdown of how this article is structured. The preliminary concept along with some properties of
conformable triple Laplace transform has been studied in the next section. The conformable triple
Laplace transform for some basic functions are introduced in Section 3. In Section 4, an application of
the operator proposed in this paper is presented for solving a few kind of third-order PDEs and the
Mboctara equation has also been transformed using the conformable triple Laplace Transform. Finally,
the conclusive remarks are presented for our paper.

2. SOME DEFINITIONS AND THEREMS

In this section, we give some definitions and theorems which illustrate the basic properties of
Conformable triple Laplace transform

a B +6

Definition 2.1: Let f (%’%’%) be a piecewise continuous function on the interval [0, 0) X [0, c0) X
[0,0) having the exponential order, consider for some a,b,c €R , sup%,%ﬁ,§>0,

PE55)
exp aa—ﬁﬁag < o, then the conformable triple Laplace transform is denoted by

b+

B s
B

L,‘?Lgﬁf [f (x—,y?,%)] and defined as the following formula :
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s (55
N €Y)
ﬁ

00 00 oo xa
0 00

Where p,s,k € C,0 < a,B,5 <1 and the integrals are in the sense of conformable fractional

B
%f x yﬁ ‘ x@1yP-1¢6-1 qtédyPdx® = F(p,s, k).
a ,8 B

integral.

(Alemayehu T. Deresse, 2022) the conformable inverse triple Laplace transform, abbreviated by

a B
f (x— 3;3 ta) is defined as follows:

x% yB o 1
f<?'?'3> = L L5 L [Fape(pos, 0]

2mi

B
1 ratioo px_ B+1oo 2| 1 [ 8+ic k
= i Jarcicn € [mf B[ oo © aﬁa(p.sk)dk]dp]d 2.

a B +6
Definition 2.2: Consider a function f defined as f (%,y—, %) The single conformable Laplace

B

transform of f with respect to % is defined by

B .6 T B +6 B .6
a X y t f —p— x y t a—l a — y t
LY [ f < = ,8 5 e o ,3 5 dx p,= Ik 5 3)
0
where the subscript % on L¥ shows that for which variable the conformable Laplace transform will

be applied.

a B +6
Congruently the conformable Laplace transform of the same function f (%, %,%) with respect to

B 5
variable y? and % can be given respectively by

Y I B A WP €
Ly[f<a ,8 6)]—!9 ﬁf<ar‘3r5y 1dy =F a,S,é,. (4—)
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B ¢8 s B ¢8 a B
x“ t t x t x
ol (= y f Y L) estaes = F (2 k). (5)
a ﬁ 5 a p
0
@ B
Definition 2.3: Consider a function f defined as f (x 3; ;) The double conformable Laplace

a B
transform of f with respect to % and y? is defined by

a

La[,ﬁ ﬁﬁi - (®(*® —10%—5% ﬁﬁt a-1y,B-1 JuBdx* = F f 6
xy[f(a’ﬁ'a)] fo foe ( "B 5) y yrax (P'S'(g),()

yB
where the subscrlpt — and —on L“LB shows that for which variable the conformable double

Laplace transform will be applled.

a B +6
Congruently, the conformable double Laplace transform of the same function f (%,%,%) with
. x@ ¢6 yB 8
respect to variable iy and & 5 can be given respectively by

i B 6 T a6 B 6 B
y e Xl (x yPt yr
L£ersd =ff Sf|l—, =, — |x* 151 qtddx™ —. k). (7
00

f
Ly[rt f<0! ,8 6) —ffe f<7,7 F)}/ t° - dt dy <?,S,k>. (8)
00

x% yP 8 .
ca E F)] shown in

Because of these definitions successive transformation denoted by L“Lﬁ Le [f (

yB t
S
(Love 1970) (E. R. Love 2009) the order of transformation can be changed, then

(Z
the equality equation (1). Let supposed that function f ( ) provides the sufficient conditions
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P x® yB 6 a B +6
fffe-pg—sf—k§f<x_ yot >xa—1yﬁ—1t6—1dt6dy[3dxa
0 0 O *
vt B-146-1,a-1 5
—,— t dx*dtédyP
"B 6) T
0 00 00 t5 X yﬁ « ﬁ
=fffe—kT—p7—sTf<x yF %>yﬁ Lea1¢5-1 4B gt
0 0 O

and symbolically can be shown as

arh YO ON _ oo pspal (22 Y0 N 2 popaph|p (22 Y2 8
LLLt[f< > 6)]—LnyLx[f<a,ﬁ,6 = L3 |f T FS

=F(p,s, k).

2.1. Some properties of conformable triple Laplace transform

In order to determine further function transforms, some prove of the properties of the conformable

. . . . . x* yP t8
triple Laplace transform are given in this section, (7, 7’?) , F(p,s, k) :

x X B t
Theorem 2.1 Let the conformable triple Laplace transform of f ( g 5) and g ( g 5) are
a B a B
exists and L;’Lffﬁf [f (x r L )] F(p,s, k) and L“LﬁL [ (x r L )] G(p,s, k). Then for

any constants a, b and c the following properties hold:

e for (2.8 ag(£2.9)

x® yPB t8 x® yB 8
= a[,g[,f,[,? [f<7,? 5)] +b Lg[,ﬁ [g <;,F,F .

arB s —aﬁ—bﬁ—cﬁ x& yﬁ t6

2. LyLyLEle "« T F 5f(7,7,6) =F(p+as+bk+o).
apB s x* o yF N1 1 (p sk

3. LilyLe [f(a a'b B '€ 6)] T a%bBcs F(a b’ c)

o comensdet () () () (5.2 9)| - St
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Proof:

1. By using the definition of Conformable Triple Laplace Transform the proof of 1 can be shown

easily.
X B t8
arB by —Cc= . (x% yB té
2. £eLhr? [ Tr(E 2 =)
0 ©o 00 yﬁ t5 X yﬁ t8 « B .5
fffe T—CTe_pF—ST—ka<x_’y_’t_>xa—lyﬁ—ltS—ldtdeﬁdxa_
a [ 6
000
C [ —aX_p¥P 80 x® yP 8 rya yB o
— a B ) a B ) AR P £ | ﬁ—ltﬁ—ldtﬁd ﬁd a
000
o _ﬁ_yﬁ t5 ¢85 [y B ¢S
=f o f b S5 [f e_CT_k?f<—,y— _) té‘ 1dt6]yﬁ ldyﬁ a— ldxa (9)
0 0 a B 6
By using conformable Triple Laplace Transform definition
© t8 ¢S x% yﬁ t6 x% yﬁ
CETE = = )0 dt = F (=, %k 10).
foe f<a'[)"6> a,ﬁ,+c (10)

Now substituting this equation (10) into the above equation (9) which gives us:

0 B B
. —by——sy—[ <_y_ >] B-1gyh | ya1
fo e U 7 k+c]||yP~ dy dx“

=F(p+as+b k + ¢).

andz=c % then the rest of the proof as follows.

a
o x yP_ff x“ B té

f e Pa Sk 5f<a 7,b y—,c —> x@ yP-1e5- 108 dyBdx®
0

5 0
0
o x@ o ﬁ o) 8 xa B t5
=| ePa f e °P f e *5f <a aliiy NP AR —) to1 dt‘s]yﬁ‘ldylg x*tdx®
0 0 0 a B8

1 co 3 ﬂ [ee) —Sy— oo t5 xa ,B
== | ePa f e P U e 5f<a — b >dz] yB1ldyP | x* 1dx®
¢ Jo 0 0 a B’

1 o) xa o) _ ﬁ ﬁ k
=—| ePa U e °B F<a - b y—,—)yﬁ'ldyﬁ x* tdx®
0

B c
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4. The order of differentiation and integration can be changed, due to convergence properties of the
improper integral included. So we can differentiate with respect to p, s, k under the integral sign.
Hence,

aa+b+cF(p’ s, k)
apaasbakc

¢ _kgf x% yﬁ t8
= 5 —,b =—,c — |0 tdtS | yFlayP
0 U ash ® f ke’ f(“a' g'°s e
9e x& _ 0 té' ¢ 6 x@ yﬁ t6
= (-1)° o f f — ) e afla—,b — | t9-1qt8 | yA-tdyP
()foapae [ asb © [0 5)¢ T\t pes Y
© ga x& © ab _Sﬁ t6 ¢ xa yﬁ t5
= (=1)¢ - f = B La . - = Bldﬁ X2l
()foapae“oasbe g B e || P x
© a © b B 5\¢ 5
94 _ x* yFP —sZ t x® yB t
=(-1 b+cf - ,7Dp f 7 B L(S - - =, _ B 1d B xa= 1d
o | ase | () e ) e 5)|| x
® ga x@ yﬁ O\ /x@ yﬁ ¢ B
= (_1)b+CL apae pa L'BLt <ﬁ> <? f 7;?;? xa ldxa
Repeating differentiation with respect to p, s and k, arises the following equation
ClyPNT (0N (x yF
a) \p 5 f a’ B8
x® yB o\ x* yBY . (8 x% yB 8
Theorem 2.2. Let f(— ?‘F) = h(—)g(—)y(—), - > 0. Then

s (5555 b )
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Proof:

Using the definition of Conformable Triple Laplace Transform (CTLT), one can get:

a B +6 a B 6
cechet [f <%%%>] = rochrs [h <x7> g <%> / <%>]
T v
0 0O
x® a 00 —Sﬁ _ _5 5
oA s [ (e

a B 5
Substituting the values of u = x;, v= % z= %, du = x*1dx* , dv = yP~1dyP and dz =

t5-1dt® into Eq. (12) and simplifying, one can find

o B ) © 0
cochet[(2)o(5)i(5)| = [ erinaoia [“emipwian et as
= LA £, g @)L O]

3. CONFORMABLE TRIPLE LAPLACE TRANSFORM OF SOME BASIC FUNCTIONS

In the following arguments, I introduce the conformable triple Laplace transform for some basic

functions

@ B
i. Letf(%,y? %)—1 Then
L;%ff,[;f[ﬂ:fffe 'S_' @ 1yB=1¢6-14¢8 gy B x|
000

From theorem 2.2 and definition of Laplace transform, one can get

LELY L8] = L [AM] £, [g (DL D] = —

e (2.2 = (2 () (&) en
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_ —p7—57—k? X Y- v =11, 8=1486-1 748 Ja,B ol
fffe [(a)(ﬂ 51Xy t° dt°dyPdx
000

From theorem 2.2 and definition of Laplace transform, one can get:

arB x yﬁ t6 ' n m r nim!r!
L L Lt a ﬂ F =13x[x ]Ly[y ]Lt[t ]=W
X B t6
x* yB té m7+ny—+r—
iil. Letf( e 5) e B8
Then

£erhrdle

X yﬁ t6
m 7+Tl 7'{' T 5

s

0 0 oo 8 X yB t
][ttt pn s
0 0 0

From theorem 2.2 and definition of Laplace transform, one can get:

B 6

x% y t° 1
m7+n7+r 5

(p—-m)(s—n)(k—1)

Lerhrl e = Lo[e™] Ly[e™]L[e"] =

iv. Ltf( )—sm( )sm( )sm( ) . Then

s gm< Yoo
T e RO R

From theorem 2.2 and definition of Laplace transform, one can get:
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oS (- o) o))

1
TP+ DE+ DR+ L)

a
a B 1)
B~ X y t
LZL,LE [cos <7> cos <7> cos <?>]
00 00 00 x « B 5
—p——S——k,g X yo U\ am1y8-146-1 7,6 308 4ot
fffe [cos<a>c05<ﬁ>cos<(S x4 yPT it dt°dyP dx
000

From theorem 2.2 and definition of Laplace transform, one can get:

il Z)o () () ) )

_ psk
@2+ D2+ Dk 4 1)

v. Let f(g,y? —) = cos (xa) cos (y:) cos (5) Then

yB 8

Theorem 3.1. Assuming that the continuous function f ( T

) is conformable triple Laplace

transformable, then

i Larkhrs [&f(%%ﬁ%] = pF(p,s k) —F(0,s, k).

.. 92 a yB 8
i LeL)ef o f (55.5)] = psF@s.k) = pF(p,0,k) = sF(0,5,k) = F(0,0,).

a B ¢
iii. L“L [mf(x X )] = psk F(p,s, k) — psF(p,s,0) — skF(p,0,k) —

pkF(0,s,k) — F(0,0,0) + pF(p,0,0) + kF(0,0,k) + sF(0,s,0).

. a yB 6 dF(0,5,k)
iv. L,?L}/EL? [axzaayﬁf (x 3;3 F)] =sp? F(p,s, k) — psF(0,s,k) — ﬁ —p?F(p,0,k) +

pF(0,0,k) + —aF (0.0k)

a LB 8 dF(0,5k) _ 9%F(0,s5k)
vo 2o [ p (55.5)] = pPF(s k) — pPF(0,5, k) — pZios) _ TFOs0,

dx3% dx@ Ix2x
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Proof:
. . . . 0 x* yB 8
i.  Using the definition of conformable triple Laplace transform for Py (; y ?) , one can
have
0 x® yP t9
ceebef | f (=
Y7l oxe' \a’ B’ 6

XY LT 9 x
PSR | (2 Y L\ a1,B-146-14.8 B gy
e [E)x"‘f(a’ ,6>]x yP=rto dtdyPdx®.  (13)

%,—,?>] x* 1dx® }yﬁ‘lt‘s'ldt‘sdyﬁ.

The integral inside bracket given by

® a B 45 B 16 B +6
X[ 0 (X YO\ oy e Yot yr
fe a Gx“f = [)) 35 dx pF p,ﬁ 3 —F 0',8'5 (14)

0

By substituting equation (14) into equation (11), one can obtain

e[ p (2 N 2 ks b - F 0,50 15
x~y~t axaf a'ﬁ’é\ - p p's’ Y . ( )
In the same manner, one can easily prove ii and iii .

yB 8 93 x® yB o
The conformable triple Laplace transformable of ——— pyw ay 7/ ( 7'?) and IxaayFord f ( g 6)

can be obtained.

i ing the definition of conformable triple Lapl form fi 0’ xt y8 &
1v. Using the definition of conformable triple Laplace transform for ox2adyF f ( E 6)

one can have

B .5
p ﬁ X y t
LeLyLe [a Z“ayﬁf<a K 5>]

0 0 0 x@  yB 8 93 @ B 6

P e 2 YOV iy ptgo-tggbaybaxe . (16
fffe [axmayﬁf(a'ﬁ'&)]x y yPdx®. (16)
0 0 0
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o tS g _ ﬁ o x® 62 x(l ﬁ t8
=fe_k7[fe B [f e_pT[axmf<;,%,§>]x“_ldx“ yP-1dyP|t5-1d¢d.

The integral inside bracket given by

r 9% (x yﬁ t8

-P a-1 a
fe 6x2“f<a ,B 6>]x dx
0

B 6
/3 5 B +68 oF O,y—,—
e (p2 ) e (o2.5) o (0% 5) .

P B’ axa

By substituting equation (17) into equation (16), one can obtain

PN A X[ 92 B 6
fe—kﬁ[fe 5 [.f e—pT[mf<a 3'/3 5>]x“_1dx“ yﬁ_ldyﬁ t8-14¢6
0 0 0
t6
= sp? F(p,s,k) —psF|0,s,— ——6—sz p,0,— |+ pF(0,0,—
) ) ) ’6 axa ) ’5 ) ’5

t8
oF (o,o,ﬂ

+
0x@

(18)

By substituting equation (18) into equation (17), one can obtain:

L“LﬁL a—sf yﬁ 2
Xy ox2agyBl \a B

. dF(0,s,k)
=sp*F(p,s, k) —psF(0,s,k) — ———

— 12

E: p*F(p,0,k) + pF(0,0,k)
OF (0,0, k

, OF©00

0x<%

(19)

a B +6
f (x Y ,t—) can be obtained.

In the same manner, the conformable triple Laplace transform of e

axSa
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4. APPLICATION TO THIRD-ORDER PARTIAL DIFFERENTIAL EQUATION

In this section, I present the application of this operator for solving some kind of third-order partial

differential equations.

Example 1. Consider the following third-order partial differential equation (Abdon Atangana 2013).

0° fﬁﬁi +fﬁﬁi =0, 0<apd=<s1 (20)
axaayﬁata a'ﬁ'é‘ (X’B'(S ] P =

Equation (20) is commonly referred to as the Mboctara equation and the initial and boundaries

conditions associated with this equation are given as follows:

B
yP t8 yh e x% yP x* yP 21
f<0,—, >=e/3 °, f( ,—,1>= ex B
B 6 B
Utilizing the conformable triple Laplace transform in (20), we have
pSk F(p; S, k) - pSF(p: S, 0) - ka(p; 0, k) - SkF(OI S, k) + pF(p, 0:0) (22)
+sF(0,s,0) + kF(0,0,k) — F(0,0,0) + F(p,s,k) =0
Then,
F(p,s, k)[1+ psk] = psF(p,s,0) + pkF(p,0,k) + skF(0,s, k)
—pF(p,0,0) —sF(0,s,0) + F(0,0,0) — kF (0,0, k)
psF(p,s,0) + pkF(p,0,k) + skF(0,s, k) — pF(p,0,0)
_ —sF(0,s,0) + F(0,0,0) — kF(0,0,k)
Fps,k) = 1+ psk
After substituting the boundary conditions and initial conditions, one can get:
1+ psk 1
Fp,sk) = 2 (23)

A+ps)p-DE-Dk+1D)  @p-DE-Dk+1)
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Utilizing the inverse conformable triple Laplace transform in (23), we have:

)
ﬂﬁt_ = [-ip-1p-1 1 ]
a’B’S T A -1D(G -1k +1)
x% yP t8 x yP 0
__Z_ _ ) = a B 6
(e - a5

Example 2. Let us consider the following nonhomogeneous Mboctara equation (Abdon Atangana

2013).

a° x* yP 9 x® yP t9 x¢ _yF 0
—axaayﬂataf<7'?'3>+f<??'f>=‘e“ Fre, 0<apssi (29

The following boundary and initial conditions will governed:

X 00)=ew )2 A
= a = a
f pall ea , f Pty e

a

x& B x®_yF x% ts x* 0
f(?l%10>=ea Zﬁ ) f(OFOIO): 15 f<?10-513>= ea+8 1-

(26)

The following can be obtained by applying the conformable triple Laplace transform to both sides of
equation (25).

psk F(p,s, k) — psF(p,s,0) — pkF(p,0,k) —skF(0,s, k)

+ pF(p,0,0) + sF(0,s,0) + kF(0,0,k) — F(0,0,0) + F(p,s, k) @7
1

T DG+ -1)

Then
F(p,s,k)[1 + psk]
= psF(p,s,0) + pkF(p,0,k) + skF(0,s,k) — pF(p,0,0)

1
—sF(0,5,0) —kF(0.0,/) + FO0.0.0) ~ &= T ym =D

After substituting the boundary conditions and initial conditions, one can get:
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1+ psk _ 1
L+psi)p-Ds+2)(k—1)  (-D+2)(k-1)

F(p,s, k) = (28)

Utilizing the inverse conformable triple Laplace transform in (28), we have:

)
¥ yP N g 1 ]
a’ B8 XY - 1D(s+2)(k—1)
a B +6
a B ¢8 X oyt
FeF5) =7 @

Example 3. Let us consider the following nonhomogeneous Mboctara equation (Abdon Atangana 2013).
a—ﬁgf — =<t l= 5=
Jdx*0yPat a B4 a B &
x“ yFP t9 x“ yFP t%\
= cos <;> cos <F> cos <— 3) — sin <?> sin <F> sin <— §>
The following boundary and initial conditions will governed:
x* x“ x® 9 x* t8
—,0,0] = — —,0,—=]= — -—
f(a' ,) COS(a)’ f<0('0'5) cos<a>cos< 6)
x"‘yﬁo_ x® yP 000 = 1 x“nt‘s_o'
f alﬁl = CoSs a Cosﬁ rf rr)_ rf a'2’5 -

By utilizing the conformable triple Laplace transform on both sides of equation (30), the following

0<a,pB6<1  (30)

(3D

results can be obtained:

psk F(p,s, k) — psF(p,s,0) — pkF(p,0,k) — skF(0,s, k)
+ pF(p,0,0) + sF(0,s,0) + kF(0,0,k) — F(0,0,0) + F(p, s, k)
psk 1
T@HDER DR -1 @2+ D(2+DKE-1)

Then
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F(p,s, k)[1 + psk]
= psF(p,s,0) + pkF(p,0,k) + skF(0,s, k) — pF(p,0,0)
psk
P+ D(s?2+ DK% -1)

—sF(0,s,0) — kF(0,0,k) + F(0,0,0) +

1
T @D+ DK - D)

After substituting the boundary conditions and initial conditions, one can get:

psk (1 + psk)

(A +psk)(P?+D(s2+1)(k%2-1)
psk

T @D+ DEE-1)

F(p,s, k) =

(32)

By employing the inverse conformable triple Laplace transform on equation (32), the subsequent

solution can be obtained:

psk

;,7,?) = LLytL! [(pz + 1) (s2 + 1) (k% - 1)]

x* yP o _ x% yF t°
f<7’F’?)_ cos(;) cos<7> cos <—§> (33)

2000
1500
1000

K Exactfixy.t)
E a=p=5=1
B a=p=6=09
B a=p=6=08
K a=p=6:07

Figure 1. Numerical solution Eq (24), when

t=01,a= f=6=1{0.90.80.7}
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H Exactfix.y.t) 2
E a=p=6=1
B a=p=6=0.9 ¥
B a=B=6=08
B a=p=6=0.7 70

Figure 2.Numerical solution Eq (29), when

t=01,a= 8= 6=1{090.80.7}

1.0

0.5
¥

I Exactf(xy.t)
E a=p=6=1
B a=p=0=09
L B a=p=6=08
10 B a=p=6-07

Figure 3. Numerical solution Eq (33), when

t=0.1,a= f=56=1{0.9,0.80.7}
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Table 1. Exact and proposed method solution of example 1 at various fractional orders

t y X a=$=6=0.7 a=$=4§§=0.8 a==8§=0.9 a=p=40=1 Exact
0 1 1 1 1 1
0.1 1.32981 1.2191 1.15014 1.10517 1.10517
0.2 1.5889 1.41189 1.29826 1.2214 1.2214
0.3 1.84969 1.61139 1.45642 1.34986 1.34986
0.4 2.1217 1.82314 1.62758 1.49182 1.49182
0.1 0.1 05 2.40943 2.0502 1.81381 1.64872 1.64872
0.6 2.71583 2.29487 2.01699 1.82212 1.82212
0.7 3.04328 2.55921 2.23898 2.01375 2.01375
0.8 3.39391 2.84522 248171 2.22554 2.22554
0.9 3.76973 3.1549 2.74723 2.4596 2.4596
1 4.17273 3.49034 3.03773 2.71828 2.71828
Table 2. Exact and proposed method solution of example 2 at various fractional orders
t y X a==8§=0.7 a=$=4§§=0.8 a=$=48=0.9 a=pf=46=1 Exact
0 0.751986 0.820278 0.869462 0.904837 0.904837
0.1 1 1 1 1 1
0.2 1.19483 1.15815 1.12879 1.10517 1.10517
0.3 1.39094 1.32179 1.2663 1.2214 1.2214
0.4 1.59549 1.49548 1.41512 1.34986 1.34986
0.1 01 05 1.81186 1.68173 1.57704 1.49182 1.49182
0.6 2.04227 1.88243 1.7537 1.64872 1.64872
0.7 2.28851 2.09926 1.94671 1.82212 1.82212
0.8 2.55217 2.33387 2.15775 2.01375 2.01375
0.9 2.83478 2.5879 2.38861 2.22554 2.22554
1. 3.13784 2.86305 2.64119 2.4596 2.4596
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t y X a=$=6=0.7 a=$=4§§=0.8 a==8§=0.9 a=p=40=1 Exact
0. 0.92093 0.961263 0.980561 0.990033 0.990033
0.1 0.883772 0.94246 0.970983 0.985087 0.985087
0.2 0.823953 0.904643 0.947345 0.970299 0.970299
0.3 0.752183 0.85392 0.912066 0.945815 0.945815
0.4 0.67244 0.793059 0.866519 0.911881 0.911881
0.1 01 05 0.587205 0.723989 0.811814 0.868836 0.868836
0.6 0.49828 0.648254 0.748958 0.81711 0.81711
0.7 0.407078 0.567175 0.678916 0.757219 0.757219
0.8 0.314759 0.481928 0.60263 0.689763 0.689763
0.9 0.2223 0.393578 0.52103 0.615415 0.615415
1. 0.130538 0.303108 0.435041 0.534917 0.534917

5. NUMERICAL RESULT

We compare the precise solution with the second-order approximations for « = =§ =1 in
order to demonstrate the effectiveness of the conformable triple Laplace transform. The numerical
solution demonstrates that the conformable triple Laplace transform systematically solves this problem
successfully; We present numerical results for arange of «, § and & in Figs. 1, 2 and 3. We can increase
accuracy by using higher-order approximation solutions. The use of the conformable double Laplace
transforms to address issues involving the unknown functions of three variables was challenging and
frequently unsuccessful. To solve the problem, the conformable double Laplace transform was
combined to create a new triple transform called the conformable triple Laplace transform. This
transformation was then investigated by using properties and theorems to solve several partial
differential equations(MZ Mohamed, Amjad Hamza et al. 2023). Ultimately, this work aims to construct
the conformable triple Laplace transform, which may be used to convert partial differential equations
into algebraic equations and solve them. The conformable triple Laplace transform provides a fast
convergence to the exact solution without making any restricting assumptions on the solution, in contrast
to other methods. Regretfully, nonlinear partial differential equations cannot be solved using this
transform or any other integral transform. This transform is frequently used with other approaches, such
as the variational technique, the differential transform method, and the homotropy method, to address
this challenge.

6. CONCLUSION

In this paper, conformable triple Laplace transform was explored to solve the partial differential
equations. Various definitions, characteristics, and theories were created, and their findings were
presented. Some significant results were proved by using the obtained properties. Additionally, the new
transform was applied to solve Mboctara equations. The Mboctara equation has also been transformed
using the conformable triple Laplace Transform. The Mboctara equation has numerical solutions that
are provided and displayed as 3D plots as shown in Figures 1,2 and 3. So, this transformation is
recommended to solve both linear and nonlinear partial differential equations.

28|Page



University of Ha'il-Journal of Science (UOHJS) Vol(5) No(1), 2024

References

Abdelilah Kamal H. Sedeeg (2023), Some Properties and Applications of a New General Triple Integral
Transform “Gamar Transform’’, Hindawi Complexity Volume 2023, Article ID 5527095, 21 pages.

Abdon Atangana (2013), A Note on the Triple Laplace Transform and Its Applications to Some Kind of Third-
Order Differential Equation, Hindawi Publishing Corporation Abstract and Applied Analysis, Article ID
769102, 10 pages.

AE Hamza, AK Sedeeg, R Saadeh, A Qazza, R Khalil (2023), A New Approach in Solving Regular and Singular
Conformable Fractional Coupled Burger's Equations, arXiv preprint arXiv:2306.10030.

A. K.Thakur, Avinash Kumar & Hetram Suryavanshi (2018), The triple laplace transforms and their properties,
International Journal of Applied Mathematics, Vol. 7, Issue 4; 33-44.

Alemayehu T. Deresse, (2022) "Analytical Solutions to Two-Dimensional Nonlinear Telegraph Equations Using
the Conformable Triple Laplace Transform Iterative Method", Advances in Mathematical Physics, vol. 2022,
Article ID 4552179, 17 pages, 2022.

Arvind Kumar Sinha and Srikumar Panda (2020), Three-dimensional natural transform and its
applications, IOP Conf. Ser.: Mater. Sci. Eng. 798 012037.

Bhanotar Shailesh A. and Belgacem Fethi Bin Muhammad (2021), Theory and Applications of Distinctive
Conformable Triple Laplace and Sumudu Transforms Decomposition Methods, J. Part. Diff. Eq., Vol. 35, No.
1, pp. 49-77.

E. R. Love (2009), Changing the order of integration. J. Australian Math. Soc. 1970, 11, 421-432.

Hassan Eltayeb and Said Mesloub (2020), A Note on Conformable Double Laplace Transform and Singular
Conformable Pseudoparabolic Equations, Hindawi Journal of Function Spaces, Article ID 8106494, 12 pages.

Lokenath Debnath (2015), The Double Laplace Transforms and Their Properties with Applications to Functional,
Integral and Partial Differential Equations, Int. J. Appl. Comput. Math 2:223-241.

Maryam Omran and Adem Kilicman (2017), Fractional Double Laplace Transform And Its Properties, American
Institute of Physics, doi: 10.1063/1.4972165.

MZ Mohamed, AE Hamza, AKH Sedeeg (2023), Conformable double Sumudu transformations efficient
approximation solutions to the fractional coupled Burger’s equation, Ain Shams Engineering Journal 14 (3),
101879.

MZ Mohamed, Amjad Hamza, Tarig Elzaki, Mohamed Algolam, Shiraz Elhussein (2023) Solution of Fractional
Heat-Like and Fractional Wave-Like Equation by using Modern Strategy, acta mechanica et automatica DOI
10.2478/ama-2023-0042.

Ozan Ozkan, Ali Kurt (2020), Conformable fractional double laplace transform and its applications to fractional
partial integro-differential equations, Journal of Fractional Calculus and Applications, Vol. 11(1), pp. 70-81.

Ozan Ozkan , Ali Kurt (2018), On conformable double Laplace transform, Opt Quant Electron 50:103.

Ram Shiromani (2018), Fractional Triple Laplace Transform and its Properties, International Journal of Innovative
Science and Research Technology, Volume 3, Issue 5.

Ranjit R. Dhunde and G. L. Waghmare (2013), Double Laplace Transform & It’s Applications, International
Journal of Engineering Research & Technology, Vol. 2 Issue 12.

Saha Ray, S. (2020). New Exact Solutions of Fractional-Order Partial Differential Equations. In: Nonlinear
Differential Equations in Physics. Springer, Singapore.

Shailesh A. Bhanotar and Mohammed K. A. Kaabar (2021), Analytical Solutions for the Nonlinear Partial
Differential Equations Using the Conformable Triple Laplace Transform Decomposition Method,
International Journal of Differential Equations, Article ID 9988160, 18 pages.

29|Pa

[§]

uQ



